Angiotensin II mediates the high-glucose-induced endothelial-to-mesenchymal transition in human aortic endothelial cells
نویسندگان
چکیده
BACKGROUND Substantial evidence suggests that high glucose (HG) causes endothelial cell damage; however, the potential mechanism therein has yet to be clarified. The aim of this study was to investigate the influence of HG on the endothelial-to-mesenchymal transition (EndMT) and its relevance to the activation of the renin-angiotensin system. METHODS Primary human aortic endothelial cells (HAECs) were divided into three groups: a normal glucose (NG) group, HG group, and irbesartan (1 microM)-treated (HG+irbesartan) group. The concentration of angiotensin II in the supernatant was detected by radioimmunoassay. Pathological changes were investigated using fluorescence microscopy and electron microscopy. Immunofluorescence staining was performed to detect the co-expression of CD31 and fibroblast markers, such as fibroblast-specific protein 1 (FSP1). The expressions of FSP1 and alpha-SMA were detected by RT-PCR and Western blot. RESULTS The treatment of HAECs in the HG group resulted in significant increases in the expressions of FSP1 and angiotensin II in dose-and time-dependent manners. The incubation of HAECs exposure to HG resulted in a fibroblast-like phenotype, wherein increased microfilamentation and a roughened endoplasmic reticulum structure were observed in the cytoplasm. The expressions of FSP1 and alpha-SMA were significantly increased in the HG group, and these changes were inhibited by irbesartan treatment (P < 0.05). Double staining of the HAECs indicated a co-localization of CD31 and FSP1 and that some cells acquired spindle-shaped morphologies and a loss of CD31 staining; however, treatment with irbesartan attenuated the expression of EndMT (P < 0.05). CONCLUSIONS These findings suggest a novel mechanism in HG-induced endothelial damage via the mediation of the EndMT by angiotensin II, which was inhibited by Irbesartan.
منابع مشابه
Endothelial Vasodilator Angiotensin Receptors are Changing in Mice with Ageing
Background: The vascular function of Angiotensin II-type-2 receptors in adults is controversial. We sought their location and function in mouse aortic rings at young and old mice. Materials and Methods: Male C57Bl mice (aged 4 and 14 months) were killed by CO2. The descending thoracic aorta was cleaned and dissected into rings. Aortic rings were mounted in Krebs’ solution at 37 °C an...
متن کاملThe Higher Response of Vascular Endothelial Growth Factor and Angiotensin-II to Human Chorionic Gonadotropin in Women with Polycystic Ovary Syndrome
Background This research investigated the response of vascular active factors, vascular endothelial growth factor (VEGF) and angiotensin-II (AT-II) to ovarian stimulation during 24 hours in patients with polycystic ovary syndrome (PCOS). MaterialsAndMethods In this clinical trial study, 52 patients with PCOS and 8 control cases were stimulated with human chorionic gonadotropin (HCG) on the 4th ...
متن کاملEffects of alpha-mangostin on memory senescence induced by high glucose in human umbilical vein endothelial cells
Objective(s): Hyperglycemia induces cellular senescence in various body cells, such as vascular endothelial cells. Since the vessels are highly distributed in the body and nourish all tissues, vascular damages cause diabetes complications such as kidney failure and visual impairment. Alpha-mangostin is a xanthone found in mangosteen fruit with protective effects in met...
متن کاملCapillary Network Formation by Endothelial Cells Differentiated from Human Bone Marrow Mesenchymal Stem Cells
Human bone marrow derived mesenchymal stem cells (HBMSCs) have the potential to differentiate into cells such as adipocyte, osteocyte, hepatocyte and endothelial cells. In this study, the differentiation of hBMSCs into endothelial like-cells was induced in presence of vascular endothelial growth factor (VEGF) and insulin-like growth factor (IGF-1). The differentiated endothelial cells were exam...
متن کامل3D study of capillary network derived from human cord blood mesenchymal stem cells and differentiated into endothelial cell with VEGFR2 protein expression
New blood forming vessels are produced by differentiation of mesodermal precursor cells to angioblasts that become endothelial cells (ECs) which in turn give rise to primitive capillary network. Human cord blood (HCB) contains large subsets of mononuclear cells (MNCs) that can be differentiated into endothelial-like cells in vitro. Human mononuclear progenitor cells were purified from fresh umb...
متن کامل